Корзина
0
Корзина
0
Добавьте в корзину товаров ещё на 900 гривен, чтобы БЕСПЛАТНО получить товар по Украине до отделения Новой почты.

Ваша корзина пустая

Меню
Основы программирования. Алгоритмы
Купить Discrete Mathematics with Combinatorics

Discrete Mathematics with Combinatorics

This carefully organized, very readable book covers every essential topic in discrete mathematics in a logical fashion. Placing each topic in context, it covers concepts associated with discrete mathematical systems that have applications in computer science, engineering, and mathematics. The author introduces more basic concepts at the freshman level than are found in other books, in a simple, accessible form. Introductory material is balanced with extensive coverage of graphs, trees, recursion, algebra, theory of computing, and combinatorics. Extensive examples throughout the text reinforce concepts. More combinatorics/algebraic structures than in most books. Detailed discussion of and strong emphasis on proofs. Extensive, in-depth presentation of topics. Large selection of applied and computational problems, ranging from the elementary to the more advanced. More topics in probability and more statistical interpretations than other texts. Comprehensive discussion of topics such as finite state machines, automata, and languages. Earlier introduction of matrices and relations, Boolean algebras and circuits than most texts. Includes algorithms for many constructive tasks that occur in discrete systems.

From the Inside Flap

Preface

While there are many discrete mathematics books on the market, none of the available books covers the desired range and depth of topics in discrete mathematics in this book and also works in a theme on how to do proofs. Proofs are introduced in the first chapter and continued throughout the book. Most students taking discrete mathematics are mathematics and computer science majors. While the necessity of learning to do proofs is obvious for mathematics majors, it is also critical for computer science students to think logically. Essentially a logical bug-free computer program is equivalent to a logical proof. Also it is assumed in this book that it is easier to use (or at least not misuse) an application if one understands why it works. With few exceptions, the book is self-contained. Concepts are developed mathematically before they are seen in an applied context.

Calculus is not required for any of the material in this book. College algebra is adequate for the basic chapters. However, although this book is self-contained, some of the remaining chapters require more mathematical maturity than the basic chapters.

This book is intended for either a one- or two-term course in discrete mathematics. The first eight chapters of this book provide a solid foundation in discrete mathematics and would be appropriate for a first-level course at the freshman or sophomore level. These chapters are essentially independent so that the instructor can pick the material he wishes to cover. The remainder of the book contains appropriate material for a second course in discrete mathematics. These chapters expand concepts introduced earlier and introduce numerous advanced topics. Topics are explored from different points of view to show how they may be used in different settings. The range of topics includes

Logic-Including truth tables, propositional logic, predicate calculus, circuits, induction, and proofs.

Set Theory-Including cardinality of sets, relations, partially ordered sets, congruence relations, graphs, directed graphs and functions.

Algorithms-Including complexity of algorithms, search and sort algorithms, the Euclidean algorithm, Huffman's algorithm, Prim's algorithms, Warshall's algorithm, the Ford-Fulkerson algorithm, the Floyd-Warshall algorithm, and Dijkstra's algorithms.

Graph Theory-Including directed graphs, Euler cycles and paths, Hamiltonian cycles and paths, planar graphs, and weighted graphs.

Tree-Including binary search trees, weighted trees, tree transversal, Huffman's codes, and spanning trees.

Combinatorics-Including permutations, combinations, inclusion-exclusion, partitions, generating functions, Catalan numbers, Sterling numbers, Rook polynomials, derangements, and enumeration of colors.

Algebra-Including semigroups, groups, lattices, semilattices, Boolean algebras, rings, fields, integral domains, polynomials, and matrices.

There is extensive number theory and algebra in this book. I feel that this is a strength of this text, but realize that others may not want to cover these subjects. The chapters in these areas are completely independent of the remainder of the book and can be covered or not as the instructor desires. This book also contains probability, finite differences, and other topics not usually found in a discrete mathematics text. ORGANIZATION

The first three chapters cover logic and set theory. It is assumed in this book that an understanding of proofs is necessary for the logical construction of advanced computer programs.

The basic concepts of a proof are given and illustrated with numerous examples. In Chapter 2, the student is given the opportunity to prove some elementary concepts of set theory. In Chapter 3, the concept of an axiom system for number theory is introduced. The student is given the opportunity to prove theorems in a familiar environment. Proofs using induction are also introduced in this chapter. Throughout the remainder of the book, many proofs are presented and many of the problems are devoted to proofs. Problems, including proofs, begin at the elementary level and continually become more advanced throughout the book.

Relations and graphs are introduced in Chapter 2. Relations lead naturally into functions, which are introduced in Chapter 4. However, the development of functions in Chapter 4 is independent of the material in Chapter 2. Similarly the development of graphs in Chapter 6 does not depend on their development as relations in Chapter 2.

Matrices, permutations, and sequences are introduced in Chapter 4 as special types of functions. Further properties of functions and matrices follow in Chapter 6. Algorithms for matrices are introduced and further properties of matrices are developed, which will be used in later chapters on algebra, counting, and theory of codes.

Permutations are used for counting in Chapter 8 and also for applications in algebra and combinatorics in later chapters. Again the material in Chapter 8, while related to Chapter 4, can be studied independently.

Chapter 5 is independent of the previous chapters except for the matrices in the previous chapter. Algorithms are developed including sorting algorithms. The complexity of algorithms is also developed in this chapter. Prefix and suffix notation are introduced here. They are again discussed in Chapter 15 with regard to traversing binary trees. Binary and hexadecimal numbers are also introduced in this chapter.

Many elementary concepts of graphs, directed graphs, and trees are covered in Chapter 6. These concepts are covered in more depth in Chapters 14-16. Chapter 6 is independent of the previous chapters.

In Chapters 7 and 9 the basics of number theory are developed. These chapters are necessary for applications of number theory in Chapter 23 but are otherwise completely independent of the other chapters and may be omitted if desired.

Chapter 8 is the beginning of extensive coverage of combinatorics. This is continued in many of the chapters including Chapters 12, 13, and 17. Chapter 8 also covers probability, which is not common in most other discrete mathematics books.

Chapters 9 and 20 cover the basic concepts of algebra including semigroups, groups rings, semilattices, lattices, rings, integral domains, and fields. These chapters use Sections 3.6 and 4.3 for examples of groups and rings. Chapter 9 is necessary for the applications in Chapters 17-21.

In many ways Chapters 11, 12, and 13 form a package. Recursion is continued in Chapter 11. In addition to the standard linear recurrence relations normally covered in a discrete mathematics text, the theory of finite difference is also covered. Chapter 6 should be covered before this chapter unless the student already has some knowledge of recursion. Chapter 12 continues the counting introduced in Chapter 8. It covers topics introduced in Chapter 8 such as occupancy problems and inclusion-exclusion. It also introduces derangements and rook polynomials. It is closely related to Chapter 11. Many of the same topics are covered from different points of view. One example of this is Stirling numbers. However neither chapter is dependent on the other.

Chapters 11 and 12 are tied together in Chapter 13, where generating functions are used to continue the material in both chapters. In particular, generating functions provide a powerful tool for the solution of occupancy problems.

Chapters 14-16 continue the study of trees and graphs begun in Chapter 6. They obviously depend on the material in Chapter 6, but are virtually independent of most of the preceding chapters. One exception is the use of matrices in some of the algorithms. Many of the standard topics of Graphs and Trees are covered including planar graphs, Hamiltonian cycles, binary trees, spanning trees, minimal spanning trees, weighted trees, shortest path algorithms, and network flows.

Chapters 17-23 form another cluster consisting of number theory, algebra, combinatorics and their application. The theory of computation is introduced in Chapter 17. This includes codes, regular languages, automata, grammars and their relationship. This chapter uses semigroups from Section 9.2. Chapter 18 introduces special codes such as error detecting codes and error correcting codes. This chapter requires knowledge of group theory, found in Section 9.4 and a knowledge of matrices, found in Chapters 4 and 5. Codes are explored from yet another direction in Chapter 23 where cryptography is introduced. This chapter is dependent on the previous chapters on number theory.

In Chapter 19, algebra and combinatorics are combined for the development of Burnside's Theorem and Polya's Theorem for the enumeration of colors. It primarily depends on a knowledge of permutations found in Section 9.4

Chapter 21 is a simple application of groups and semigroups and their mapping onto the complex plane. The prerequisites for this chapter are Sections 9.2 and 9.4.

Chapter 22 gives three important applications of number theory. The study of Hashing functions and cryptography is particularly relevant to computer science.

When teaching a beginning course, I normally cover Chapters 1-5 in their entirety, Sections 8.1-8.3 and try to cover the first three sections of Chapter 6. As mentioned previously, the material in the first eight chapters is arranged for maximal flexibility. SUPPLEMENTS

A solutions manual is available from the publisher with complete solutions to all problems. A website is available at prenhall/janderson. This website includes links to other interesting sites in discrete mathematics, quizzes, and additional problems. ACKNOWLEDGMENTS

First I would like to thank George Lobell for his leadership in the development of this book and Barbara Mack for coordinating our efforts. I would like to thank Kristin and Philip Musik for their excellent artwork. I am especially grateful to James Bell for the tremendous amount of work that he has contributed. I am sorry that he was unable to co-author this book with me. I miss having him as a partner. I would also like to thank my colleagues Dan Cooke, Ed Wilde, Rick Chow, M. B. Ulmer, and Jerome Lewis for their help. I would like to thank Soledad Sugai for the errors she found while a student in my course. I would also like to thank students Jody Dean, Jessica Dones, Grace Ellison, Vinny Chin Fai Ip, Priscilla Lapierre, Esther Ly, Badral Madani, Julie Norris, Tracy Quin and Robert Wiegert, who survived the first voyage through this material.

Please feel free to e-mail me with comments and suggestions for future improvements
347
Нет в наличии

Discrete Mathematics with Combinatorics

Купить Discrete Mathematics with Combinatorics
Артикул : 4301
Издательство : Prentice Hall
Язык : Английский
ISBN13 : 978-0-13-086998-2
EAN13 : 9780130869982
Страниц : 807
Год издания : 2001
Нет в наличии

Описание
This carefully organized, very readable book covers every essential topic in discrete mathematics in a logical fashion. Placing each topic in context, it covers concepts associated with discrete mathematical systems that have applications in computer science, engineering, and mathematics. The author introduces more basic concepts at the freshman level than are found in other books, in a simple, accessible form. Introductory material is balanced with extensive coverage of graphs, trees, recursion, algebra, theory of computing, and combinatorics. Extensive examples throughout the text reinforce concepts. More combinatorics/algebraic structures than in most books. Detailed discussion of and strong emphasis on proofs. Extensive, in-depth presentation of topics. Large selection of applied and computational problems, ranging from the elementary to the more advanced. More topics in probability and more statistical interpretations than other texts. Comprehensive discussion of topics such as finite state machines, automata, and languages. Earlier introduction of matrices and relations, Boolean algebras and circuits than most texts. Includes algorithms for many constructive tasks that occur in discrete systems.

From the Inside Flap

Preface

While there are many discrete mathematics books on the market, none of the available books covers the desired range and depth of topics in discrete mathematics in this book and also works in a theme on how to do proofs. Proofs are introduced in the first chapter and continued throughout the book. Most students taking discrete mathematics are mathematics and computer science majors. While the necessity of learning to do proofs is obvious for mathematics majors, it is also critical for computer science students to think logically. Essentially a logical bug-free computer program is equivalent to a logical proof. Also it is assumed in this book that it is easier to use (or at least not misuse) an application if one understands why it works. With few exceptions, the book is self-contained. Concepts are developed mathematically before they are seen in an applied context.

Calculus is not required for any of the material in this book. College algebra is adequate for the basic chapters. However, although this book is self-contained, some of the remaining chapters require more mathematical maturity than the basic chapters.

This book is intended for either a one- or two-term course in discrete mathematics. The first eight chapters of this book provide a solid foundation in discrete mathematics and would be appropriate for a first-level course at the freshman or sophomore level. These chapters are essentially independent so that the instructor can pick the material he wishes to cover. The remainder of the book contains appropriate material for a second course in discrete mathematics. These chapters expand concepts introduced earlier and introduce numerous advanced topics. Topics are explored from different points of view to show how they may be used in different settings. The range of topics includes

Logic-Including truth tables, propositional logic, predicate calculus, circuits, induction, and proofs.

Set Theory-Including cardinality of sets, relations, partially ordered sets, congruence relations, graphs, directed graphs and functions.

Algorithms-Including complexity of algorithms, search and sort algorithms, the Euclidean algorithm, Huffman's algorithm, Prim's algorithms, Warshall's algorithm, the Ford-Fulkerson algorithm, the Floyd-Warshall algorithm, and Dijkstra's algorithms.

Graph Theory-Including directed graphs, Euler cycles and paths, Hamiltonian cycles and paths, planar graphs, and weighted graphs.

Tree-Including binary search trees, weighted trees, tree transversal, Huffman's codes, and spanning trees.

Combinatorics-Including permutations, combinations, inclusion-exclusion, partitions, generating functions, Catalan numbers, Sterling numbers, Rook polynomials, derangements, and enumeration of colors.

Algebra-Including semigroups, groups, lattices, semilattices, Boolean algebras, rings, fields, integral domains, polynomials, and matrices.

There is extensive number theory and algebra in this book. I feel that this is a strength of this text, but realize that others may not want to cover these subjects. The chapters in these areas are completely independent of the remainder of the book and can be covered or not as the instructor desires. This book also contains probability, finite differences, and other topics not usually found in a discrete mathematics text. ORGANIZATION

The first three chapters cover logic and set theory. It is assumed in this book that an understanding of proofs is necessary for the logical construction of advanced computer programs.

The basic concepts of a proof are given and illustrated with numerous examples. In Chapter 2, the student is given the opportunity to prove some elementary concepts of set theory. In Chapter 3, the concept of an axiom system for number theory is introduced. The student is given the opportunity to prove theorems in a familiar environment. Proofs using induction are also introduced in this chapter. Throughout the remainder of the book, many proofs are presented and many of the problems are devoted to proofs. Problems, including proofs, begin at the elementary level and continually become more advanced throughout the book.

Relations and graphs are introduced in Chapter 2. Relations lead naturally into functions, which are introduced in Chapter 4. However, the development of functions in Chapter 4 is independent of the material in Chapter 2. Similarly the development of graphs in Chapter 6 does not depend on their development as relations in Chapter 2.

Matrices, permutations, and sequences are introduced in Chapter 4 as special types of functions. Further properties of functions and matrices follow in Chapter 6. Algorithms for matrices are introduced and further properties of matrices are developed, which will be used in later chapters on algebra, counting, and theory of codes.

Permutations are used for counting in Chapter 8 and also for applications in algebra and combinatorics in later chapters. Again the material in Chapter 8, while related to Chapter 4, can be studied independently.

Chapter 5 is independent of the previous chapters except for the matrices in the previous chapter. Algorithms are developed including sorting algorithms. The complexity of algorithms is also developed in this chapter. Prefix and suffix notation are introduced here. They are again discussed in Chapter 15 with regard to traversing binary trees. Binary and hexadecimal numbers are also introduced in this chapter.

Many elementary concepts of graphs, directed graphs, and trees are covered in Chapter 6. These concepts are covered in more depth in Chapters 14-16. Chapter 6 is independent of the previous chapters.

In Chapters 7 and 9 the basics of number theory are developed. These chapters are necessary for applications of number theory in Chapter 23 but are otherwise completely independent of the other chapters and may be omitted if desired.

Chapter 8 is the beginning of extensive coverage of combinatorics. This is continued in many of the chapters including Chapters 12, 13, and 17. Chapter 8 also covers probability, which is not common in most other discrete mathematics books.

Chapters 9 and 20 cover the basic concepts of algebra including semigroups, groups rings, semilattices, lattices, rings, integral domains, and fields. These chapters use Sections 3.6 and 4.3 for examples of groups and rings. Chapter 9 is necessary for the applications in Chapters 17-21.

In many ways Chapters 11, 12, and 13 form a package. Recursion is continued in Chapter 11. In addition to the standard linear recurrence relations normally covered in a discrete mathematics text, the theory of finite difference is also covered. Chapter 6 should be covered before this chapter unless the student already has some knowledge of recursion. Chapter 12 continues the counting introduced in Chapter 8. It covers topics introduced in Chapter 8 such as occupancy problems and inclusion-exclusion. It also introduces derangements and rook polynomials. It is closely related to Chapter 11. Many of the same topics are covered from different points of view. One example of this is Stirling numbers. However neither chapter is dependent on the other.

Chapters 11 and 12 are tied together in Chapter 13, where generating functions are used to continue the material in both chapters. In particular, generating functions provide a powerful tool for the solution of occupancy problems.

Chapters 14-16 continue the study of trees and graphs begun in Chapter 6. They obviously depend on the material in Chapter 6, but are virtually independent of most of the preceding chapters. One exception is the use of matrices in some of the algorithms. Many of the standard topics of Graphs and Trees are covered including planar graphs, Hamiltonian cycles, binary trees, spanning trees, minimal spanning trees, weighted trees, shortest path algorithms, and network flows.

Chapters 17-23 form another cluster consisting of number theory, algebra, combinatorics and their application. The theory of computation is introduced in Chapter 17. This includes codes, regular languages, automata, grammars and their relationship. This chapter uses semigroups from Section 9.2. Chapter 18 introduces special codes such as error detecting codes and error correcting codes. This chapter requires knowledge of group theory, found in Section 9.4 and a knowledge of matrices, found in Chapters 4 and 5. Codes are explored from yet another direction in Chapter 23 where cryptography is introduced. This chapter is dependent on the previous chapters on number theory.

In Chapter 19, algebra and combinatorics are combined for the development of Burnside's Theorem and Polya's Theorem for the enumeration of colors. It primarily depends on a knowledge of permutations found in Section 9.4

Chapter 21 is a simple application of groups and semigroups and their mapping onto the complex plane. The prerequisites for this chapter are Sections 9.2 and 9.4.

Chapter 22 gives three important applications of number theory. The study of Hashing functions and cryptography is particularly relevant to computer science.

When teaching a beginning course, I normally cover Chapters 1-5 in their entirety, Sections 8.1-8.3 and try to cover the first three sections of Chapter 6. As mentioned previously, the material in the first eight chapters is arranged for maximal flexibility. SUPPLEMENTS

A solutions manual is available from the publisher with complete solutions to all problems. A website is available at prenhall/janderson. This website includes links to other interesting sites in discrete mathematics, quizzes, and additional problems. ACKNOWLEDGMENTS

First I would like to thank George Lobell for his leadership in the development of this book and Barbara Mack for coordinating our efforts. I would like to thank Kristin and Philip Musik for their excellent artwork. I am especially grateful to James Bell for the tremendous amount of work that he has contributed. I am sorry that he was unable to co-author this book with me. I miss having him as a partner. I would also like to thank my colleagues Dan Cooke, Ed Wilde, Rick Chow, M. B. Ulmer, and Jerome Lewis for their help. I would like to thank Soledad Sugai for the errors she found while a student in my course. I would also like to thank students Jody Dean, Jessica Dones, Grace Ellison, Vinny Chin Fai Ip, Priscilla Lapierre, Esther Ly, Badral Madani, Julie Norris, Tracy Quin and Robert Wiegert, who survived the first voyage through this material.

Please feel free to e-mail me with comments and suggestions for future improvements

Рекомендуемые книги

Купить Корпорация гениев: Как управлять командой творческих людей

Корпорация гениев: Как управлять командой творческих людей

Эд Кэтмелл, Эми Уоллес

194 грн
Купить Навчитися вчитися. Як запустити свій мозок на повну

Навчитися вчитися. Як запустити свій мозок на повну

Барбара Оклі

200 грн
Купить Маленькі дослідники. Динозаври

Маленькі дослідники. Динозаври

Рут Мартін і Аллан Сандер

304 грн
Купить Интегральный коучинг. Как научить и научиться

Интегральный коучинг. Как научить и научиться

495 грн
Купить Эффективное программирование на C++. Практическое программирование на примерах

Эффективное программирование на C++. Практическое программирование на примерах

Эндрю Кёниг, Барбара Э. Му

560 грн
Купить Не зевай! Игра для самых ловких и внимательных. Настольная игра

Не зевай! Игра для самых ловких и внимательных. Настольная игра

550 грн
Купить Як приручити дракона. Як стати піратом. Книга 2

Як приручити дракона. Як стати піратом. Книга 2

Крессида Коуэлл

194 грн
Купить Волшебник Изумрудного города

Волшебник Изумрудного города

Александр Волков

176 грн
Купить Твое личное тело. 50 советов от девчонки, которая повзрослела

Твое личное тело. 50 советов от девчонки, которая повзрослела

Марава Ибрагим, Синем Эркас

323 грн
Купить Убивство Роджера Екройда

Убивство Роджера Екройда

Агата Кристи

111 грн
Купить Сверхчувствительные люди. От трудностей к преимуществам

Сверхчувствительные люди. От трудностей к преимуществам

Тед Зефф

355 грн
Купить Модельное мышление. Как анализировать сложные явления с помощью математических моделей

Модельное мышление. Как анализировать сложные явления с помощью математических моделей

Скотт Пейдж

940 грн
Купить Маркетинг від А до Я: 80 концепцій, які варто знати кожному менеджеру

Маркетинг від А до Я: 80 концепцій, які варто знати кожному менеджеру

Филип Котлер

184 грн
Купить Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow

Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow

Себастьян Рашка, Вахид Мирджалили

891 грн
Купить Главная маркетинговая книга от Алексея Филановского

Главная маркетинговая книга от Алексея Филановского

Алексей Филановский

280 грн
Купить Принцесса. Супернаклейки-мини (Более 200 наклеек)

Принцесса. Супернаклейки-мини (Более 200 наклеек)

97 грн
Купить Выйти из депрессии за 10 шагов. Когнитивно-поведенческий подход

Выйти из депрессии за 10 шагов. Когнитивно-поведенческий подход

Саймон Рего, Сара Фейдер

335 грн
Купить Государь

Государь

Никколо Макиавелли

60 грн
Купить Илон Маск: Tesla, SpaceX и дорога в будущее

Илон Маск: Tesla, SpaceX и дорога в будущее

Эшли Вэнс

783 грн
Купить Поліанна. Поліанна виростає

Поліанна. Поліанна виростає

Элинор Портер

387 грн
Купить Подсказчик (Серия Мила Васкес)

Подсказчик (Серия Мила Васкес)

Донато Карризи

194 грн
Купить Lord of the Flies = Повелитель мух

Lord of the Flies = Повелитель мух

Уильям Голдинг

184 грн
Купить Love of Life = Любов до життя

Love of Life = Любов до життя

Джек Лондон

124 грн
Купить Багряний колір вічності

Багряний колір вічності

Наталія Гурницька

102 грн
Купить Ігри, у які грають люди. Світовий бестселер із психології стосунків

Ігри, у які грають люди. Світовий бестселер із психології стосунків

Эрик Берн

184 грн
Купить Сила Воли. Комикс

Сила Воли. Комикс

Галина Шабшай, Ефим Шабшай

86 грн
Купить Малюк та бюджет. Як українським батькам виховати фінансово успішних дітей

Малюк та бюджет. Як українським батькам виховати фінансово успішних дітей

Любомир Остапів

221 грн
Купить Контролируй мысли и чувства: когнитивно-поведенческий подход

Контролируй мысли и чувства: когнитивно-поведенческий подход

Мэттью Маккей, Марта Дэвис, Патрик Фаннинг

411 грн
Купить Ван Гог. Жага до життя

Ван Гог. Жага до життя

Ирвинг Стоун

263 грн
Купить Научиться рисовать людей быстро

Научиться рисовать людей быстро

Хэйзел Соун

212 грн
Купить Благие знамения

Благие знамения

Терри Пратчетт, Нил Гейман

208 грн
Купить Практическое пособие Ч.1 по высшей математике

Практическое пособие Ч.1 по высшей математике

Полозюк О.Е.

5 грн
Купить Маламандер

Маламандер

Томас Тейлор

139 грн
Купить Roblox. Куди подівся Нуб?

Roblox. Куди подівся Нуб?

Крейґ Джеллі

258 грн
Купить Актуальный интернет-маркетинг

Актуальный интернет-маркетинг

Антон Воронюк, Александр Полищук

275 грн
Купить Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными

Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными

Андреас Мюллер, Сара Гвидо

1 130 грн
Купить Программирование на C для чайников

Программирование на C для чайников

Дэн Гукин

441 грн
Купить Молодость навсегда. Как замедлить процессы старения и сохранить здоровье

Молодость навсегда. Как замедлить процессы старения и сохранить здоровье

Дункан Кармайкл

345 грн
Купить Всё о Муми-троллях. Книга 1

Всё о Муми-троллях. Книга 1

Туве Янссон

240 грн
Купить Жизнь в потоке: Коучинг

Жизнь в потоке: Коучинг

Мэрилин Аткинсон

323 грн

Книги из категории "Книги по программированию"

Купить Scratch для детей. Самоучитель по программированию

Scratch для детей. Самоучитель по программированию

Мажед Маржи

569 грн
456 грн
Купить Язык программирования C++. Краткий курс

Язык программирования C++. Краткий курс

Бьярне Страуструп

569 грн
484 грн
Купить Оптимизация программ на C++. Проверенные методы повышения производительности

Оптимизация программ на C++. Проверенные методы повышения производительности

Курт Гантерот

782 грн
665 грн
Купить JavaScript: 20 уроков для начинающих

JavaScript: 20 уроков для начинающих

Владимир Дронов

523 грн
419 грн
Купить Глубокое обучение: готовые решения

Глубокое обучение: готовые решения

Давид Осинга

385 грн
328 грн
Купить HTML5: карманный справочник

HTML5: карманный справочник

Дженнифер Нидерст Роббинс

311 грн
265 грн
Купить PHP: объекты, шаблоны и методики программирования

PHP: объекты, шаблоны и методики программирования

Мэтт Зандстра

932 грн
793 грн
Купить JavaScript. Полное руководство

JavaScript. Полное руководство

Дэвид Флэнаган

932 грн
793 грн
Купить Java SE 9. Базовый курс

Java SE 9. Базовый курс

Кей С. Хорстманн

680 грн
Купить Разработка и анализ компьютерных алгоритмов

Разработка и анализ компьютерных алгоритмов

Альфред В. Ахо, Джон Э. Хопкрофт, Джеффри Д. Ульман

679 грн
578 грн
Купить Конкурентное программирование на SCALA

Конкурентное программирование на SCALA

Александр Прокопец

940 грн
658 грн
Купить Прикладное машинное обучение без учителя с использованием Python

Прикладное машинное обучение без учителя с использованием Python

Анкур Пател

932 грн
793 грн
Купить Потрачено. Беспредельная история GTA

Потрачено. Беспредельная история GTA

Дэвид Кушнер

360 грн
Купить C# для профессионалов: тонкости программирования

C# для профессионалов: тонкости программирования

Джон Скит

1 300 грн
1 105 грн
Купить Кров, піт і пікселі. Тріумфальні та бурхливі історії по той бік створення відеоігор

Кров, піт і пікселі. Тріумфальні та бурхливі історії по той бік створення відеоігор

Джейсон Шрейер

305 грн
244 грн
Купить C++: полное руководство, классическое издание

C++: полное руководство, классическое издание

Герберт Шилдт

1 300 грн
1 105 грн
Купить Компьютерное зрение. Современный подход

Компьютерное зрение. Современный подход

Форсайт

1 242 грн
1 056 грн
Купить Предиктивное моделирование на практике

Предиктивное моделирование на практике

Макс Кун, Джонсон Кьелл

Нет в наличии
Купить Java. Полное руководство, том 1

Java. Полное руководство, том 1

Герберт Шилдт

621 грн
528 грн
Купить Java для чайников

Java для чайников

Барри Берд

644 грн
548 грн

Цитаты пользователей

Всего цитат
0

Только зарегистрированные пользователи могут оставлять комментарии. Войдите, пожалуйста.

Отзывы

Отзывы
0 рецензий

Только зарегистрированные пользователи могут оставлять комментарии. Войдите, пожалуйста.
Все права защищены © 2003-2021 Bookzone.com.ua              Условия использования | Политика конфиденциальности
Интеграция сайта с 1С: ©SUPC