Корзина
0
Корзина
0
Добавьте в корзину товаров ещё на 900 гривен, чтобы БЕСПЛАТНО получить товар по Украине до отделения Новой почты.

Ваша корзина пустая

Меню
Основы программирования. Алгоритмы
Купить Discrete Mathematics with Combinatorics

Discrete Mathematics with Combinatorics

This carefully organized, very readable book covers every essential topic in discrete mathematics in a logical fashion. Placing each topic in context, it covers concepts associated with discrete mathematical systems that have applications in computer science, engineering, and mathematics. The author introduces more basic concepts at the freshman level than are found in other books, in a simple, accessible form. Introductory material is balanced with extensive coverage of graphs, trees, recursion, algebra, theory of computing, and combinatorics. Extensive examples throughout the text reinforce concepts. More combinatorics/algebraic structures than in most books. Detailed discussion of and strong emphasis on proofs. Extensive, in-depth presentation of topics. Large selection of applied and computational problems, ranging from the elementary to the more advanced. More topics in probability and more statistical interpretations than other texts. Comprehensive discussion of topics such as finite state machines, automata, and languages. Earlier introduction of matrices and relations, Boolean algebras and circuits than most texts. Includes algorithms for many constructive tasks that occur in discrete systems.

From the Inside Flap

Preface

While there are many discrete mathematics books on the market, none of the available books covers the desired range and depth of topics in discrete mathematics in this book and also works in a theme on how to do proofs. Proofs are introduced in the first chapter and continued throughout the book. Most students taking discrete mathematics are mathematics and computer science majors. While the necessity of learning to do proofs is obvious for mathematics majors, it is also critical for computer science students to think logically. Essentially a logical bug-free computer program is equivalent to a logical proof. Also it is assumed in this book that it is easier to use (or at least not misuse) an application if one understands why it works. With few exceptions, the book is self-contained. Concepts are developed mathematically before they are seen in an applied context.

Calculus is not required for any of the material in this book. College algebra is adequate for the basic chapters. However, although this book is self-contained, some of the remaining chapters require more mathematical maturity than the basic chapters.

This book is intended for either a one- or two-term course in discrete mathematics. The first eight chapters of this book provide a solid foundation in discrete mathematics and would be appropriate for a first-level course at the freshman or sophomore level. These chapters are essentially independent so that the instructor can pick the material he wishes to cover. The remainder of the book contains appropriate material for a second course in discrete mathematics. These chapters expand concepts introduced earlier and introduce numerous advanced topics. Topics are explored from different points of view to show how they may be used in different settings. The range of topics includes

Logic-Including truth tables, propositional logic, predicate calculus, circuits, induction, and proofs.

Set Theory-Including cardinality of sets, relations, partially ordered sets, congruence relations, graphs, directed graphs and functions.

Algorithms-Including complexity of algorithms, search and sort algorithms, the Euclidean algorithm, Huffman's algorithm, Prim's algorithms, Warshall's algorithm, the Ford-Fulkerson algorithm, the Floyd-Warshall algorithm, and Dijkstra's algorithms.

Graph Theory-Including directed graphs, Euler cycles and paths, Hamiltonian cycles and paths, planar graphs, and weighted graphs.

Tree-Including binary search trees, weighted trees, tree transversal, Huffman's codes, and spanning trees.

Combinatorics-Including permutations, combinations, inclusion-exclusion, partitions, generating functions, Catalan numbers, Sterling numbers, Rook polynomials, derangements, and enumeration of colors.

Algebra-Including semigroups, groups, lattices, semilattices, Boolean algebras, rings, fields, integral domains, polynomials, and matrices.

There is extensive number theory and algebra in this book. I feel that this is a strength of this text, but realize that others may not want to cover these subjects. The chapters in these areas are completely independent of the remainder of the book and can be covered or not as the instructor desires. This book also contains probability, finite differences, and other topics not usually found in a discrete mathematics text. ORGANIZATION

The first three chapters cover logic and set theory. It is assumed in this book that an understanding of proofs is necessary for the logical construction of advanced computer programs.

The basic concepts of a proof are given and illustrated with numerous examples. In Chapter 2, the student is given the opportunity to prove some elementary concepts of set theory. In Chapter 3, the concept of an axiom system for number theory is introduced. The student is given the opportunity to prove theorems in a familiar environment. Proofs using induction are also introduced in this chapter. Throughout the remainder of the book, many proofs are presented and many of the problems are devoted to proofs. Problems, including proofs, begin at the elementary level and continually become more advanced throughout the book.

Relations and graphs are introduced in Chapter 2. Relations lead naturally into functions, which are introduced in Chapter 4. However, the development of functions in Chapter 4 is independent of the material in Chapter 2. Similarly the development of graphs in Chapter 6 does not depend on their development as relations in Chapter 2.

Matrices, permutations, and sequences are introduced in Chapter 4 as special types of functions. Further properties of functions and matrices follow in Chapter 6. Algorithms for matrices are introduced and further properties of matrices are developed, which will be used in later chapters on algebra, counting, and theory of codes.

Permutations are used for counting in Chapter 8 and also for applications in algebra and combinatorics in later chapters. Again the material in Chapter 8, while related to Chapter 4, can be studied independently.

Chapter 5 is independent of the previous chapters except for the matrices in the previous chapter. Algorithms are developed including sorting algorithms. The complexity of algorithms is also developed in this chapter. Prefix and suffix notation are introduced here. They are again discussed in Chapter 15 with regard to traversing binary trees. Binary and hexadecimal numbers are also introduced in this chapter.

Many elementary concepts of graphs, directed graphs, and trees are covered in Chapter 6. These concepts are covered in more depth in Chapters 14-16. Chapter 6 is independent of the previous chapters.

In Chapters 7 and 9 the basics of number theory are developed. These chapters are necessary for applications of number theory in Chapter 23 but are otherwise completely independent of the other chapters and may be omitted if desired.

Chapter 8 is the beginning of extensive coverage of combinatorics. This is continued in many of the chapters including Chapters 12, 13, and 17. Chapter 8 also covers probability, which is not common in most other discrete mathematics books.

Chapters 9 and 20 cover the basic concepts of algebra including semigroups, groups rings, semilattices, lattices, rings, integral domains, and fields. These chapters use Sections 3.6 and 4.3 for examples of groups and rings. Chapter 9 is necessary for the applications in Chapters 17-21.

In many ways Chapters 11, 12, and 13 form a package. Recursion is continued in Chapter 11. In addition to the standard linear recurrence relations normally covered in a discrete mathematics text, the theory of finite difference is also covered. Chapter 6 should be covered before this chapter unless the student already has some knowledge of recursion. Chapter 12 continues the counting introduced in Chapter 8. It covers topics introduced in Chapter 8 such as occupancy problems and inclusion-exclusion. It also introduces derangements and rook polynomials. It is closely related to Chapter 11. Many of the same topics are covered from different points of view. One example of this is Stirling numbers. However neither chapter is dependent on the other.

Chapters 11 and 12 are tied together in Chapter 13, where generating functions are used to continue the material in both chapters. In particular, generating functions provide a powerful tool for the solution of occupancy problems.

Chapters 14-16 continue the study of trees and graphs begun in Chapter 6. They obviously depend on the material in Chapter 6, but are virtually independent of most of the preceding chapters. One exception is the use of matrices in some of the algorithms. Many of the standard topics of Graphs and Trees are covered including planar graphs, Hamiltonian cycles, binary trees, spanning trees, minimal spanning trees, weighted trees, shortest path algorithms, and network flows.

Chapters 17-23 form another cluster consisting of number theory, algebra, combinatorics and their application. The theory of computation is introduced in Chapter 17. This includes codes, regular languages, automata, grammars and their relationship. This chapter uses semigroups from Section 9.2. Chapter 18 introduces special codes such as error detecting codes and error correcting codes. This chapter requires knowledge of group theory, found in Section 9.4 and a knowledge of matrices, found in Chapters 4 and 5. Codes are explored from yet another direction in Chapter 23 where cryptography is introduced. This chapter is dependent on the previous chapters on number theory.

In Chapter 19, algebra and combinatorics are combined for the development of Burnside's Theorem and Polya's Theorem for the enumeration of colors. It primarily depends on a knowledge of permutations found in Section 9.4

Chapter 21 is a simple application of groups and semigroups and their mapping onto the complex plane. The prerequisites for this chapter are Sections 9.2 and 9.4.

Chapter 22 gives three important applications of number theory. The study of Hashing functions and cryptography is particularly relevant to computer science.

When teaching a beginning course, I normally cover Chapters 1-5 in their entirety, Sections 8.1-8.3 and try to cover the first three sections of Chapter 6. As mentioned previously, the material in the first eight chapters is arranged for maximal flexibility. SUPPLEMENTS

A solutions manual is available from the publisher with complete solutions to all problems. A website is available at prenhall/janderson. This website includes links to other interesting sites in discrete mathematics, quizzes, and additional problems. ACKNOWLEDGMENTS

First I would like to thank George Lobell for his leadership in the development of this book and Barbara Mack for coordinating our efforts. I would like to thank Kristin and Philip Musik for their excellent artwork. I am especially grateful to James Bell for the tremendous amount of work that he has contributed. I am sorry that he was unable to co-author this book with me. I miss having him as a partner. I would also like to thank my colleagues Dan Cooke, Ed Wilde, Rick Chow, M. B. Ulmer, and Jerome Lewis for their help. I would like to thank Soledad Sugai for the errors she found while a student in my course. I would also like to thank students Jody Dean, Jessica Dones, Grace Ellison, Vinny Chin Fai Ip, Priscilla Lapierre, Esther Ly, Badral Madani, Julie Norris, Tracy Quin and Robert Wiegert, who survived the first voyage through this material.

Please feel free to e-mail me with comments and suggestions for future improvements
347
Нет в наличии

Discrete Mathematics with Combinatorics

Купить Discrete Mathematics with Combinatorics
Артикул : 4301
Издательство : Prentice Hall
Язык : Английский
ISBN13 : 978-0-13-086998-2
EAN13 : 9780130869982
Страниц : 807
Год издания : 2001
Нет в наличии

Описание
This carefully organized, very readable book covers every essential topic in discrete mathematics in a logical fashion. Placing each topic in context, it covers concepts associated with discrete mathematical systems that have applications in computer science, engineering, and mathematics. The author introduces more basic concepts at the freshman level than are found in other books, in a simple, accessible form. Introductory material is balanced with extensive coverage of graphs, trees, recursion, algebra, theory of computing, and combinatorics. Extensive examples throughout the text reinforce concepts. More combinatorics/algebraic structures than in most books. Detailed discussion of and strong emphasis on proofs. Extensive, in-depth presentation of topics. Large selection of applied and computational problems, ranging from the elementary to the more advanced. More topics in probability and more statistical interpretations than other texts. Comprehensive discussion of topics such as finite state machines, automata, and languages. Earlier introduction of matrices and relations, Boolean algebras and circuits than most texts. Includes algorithms for many constructive tasks that occur in discrete systems.

From the Inside Flap

Preface

While there are many discrete mathematics books on the market, none of the available books covers the desired range and depth of topics in discrete mathematics in this book and also works in a theme on how to do proofs. Proofs are introduced in the first chapter and continued throughout the book. Most students taking discrete mathematics are mathematics and computer science majors. While the necessity of learning to do proofs is obvious for mathematics majors, it is also critical for computer science students to think logically. Essentially a logical bug-free computer program is equivalent to a logical proof. Also it is assumed in this book that it is easier to use (or at least not misuse) an application if one understands why it works. With few exceptions, the book is self-contained. Concepts are developed mathematically before they are seen in an applied context.

Calculus is not required for any of the material in this book. College algebra is adequate for the basic chapters. However, although this book is self-contained, some of the remaining chapters require more mathematical maturity than the basic chapters.

This book is intended for either a one- or two-term course in discrete mathematics. The first eight chapters of this book provide a solid foundation in discrete mathematics and would be appropriate for a first-level course at the freshman or sophomore level. These chapters are essentially independent so that the instructor can pick the material he wishes to cover. The remainder of the book contains appropriate material for a second course in discrete mathematics. These chapters expand concepts introduced earlier and introduce numerous advanced topics. Topics are explored from different points of view to show how they may be used in different settings. The range of topics includes

Logic-Including truth tables, propositional logic, predicate calculus, circuits, induction, and proofs.

Set Theory-Including cardinality of sets, relations, partially ordered sets, congruence relations, graphs, directed graphs and functions.

Algorithms-Including complexity of algorithms, search and sort algorithms, the Euclidean algorithm, Huffman's algorithm, Prim's algorithms, Warshall's algorithm, the Ford-Fulkerson algorithm, the Floyd-Warshall algorithm, and Dijkstra's algorithms.

Graph Theory-Including directed graphs, Euler cycles and paths, Hamiltonian cycles and paths, planar graphs, and weighted graphs.

Tree-Including binary search trees, weighted trees, tree transversal, Huffman's codes, and spanning trees.

Combinatorics-Including permutations, combinations, inclusion-exclusion, partitions, generating functions, Catalan numbers, Sterling numbers, Rook polynomials, derangements, and enumeration of colors.

Algebra-Including semigroups, groups, lattices, semilattices, Boolean algebras, rings, fields, integral domains, polynomials, and matrices.

There is extensive number theory and algebra in this book. I feel that this is a strength of this text, but realize that others may not want to cover these subjects. The chapters in these areas are completely independent of the remainder of the book and can be covered or not as the instructor desires. This book also contains probability, finite differences, and other topics not usually found in a discrete mathematics text. ORGANIZATION

The first three chapters cover logic and set theory. It is assumed in this book that an understanding of proofs is necessary for the logical construction of advanced computer programs.

The basic concepts of a proof are given and illustrated with numerous examples. In Chapter 2, the student is given the opportunity to prove some elementary concepts of set theory. In Chapter 3, the concept of an axiom system for number theory is introduced. The student is given the opportunity to prove theorems in a familiar environment. Proofs using induction are also introduced in this chapter. Throughout the remainder of the book, many proofs are presented and many of the problems are devoted to proofs. Problems, including proofs, begin at the elementary level and continually become more advanced throughout the book.

Relations and graphs are introduced in Chapter 2. Relations lead naturally into functions, which are introduced in Chapter 4. However, the development of functions in Chapter 4 is independent of the material in Chapter 2. Similarly the development of graphs in Chapter 6 does not depend on their development as relations in Chapter 2.

Matrices, permutations, and sequences are introduced in Chapter 4 as special types of functions. Further properties of functions and matrices follow in Chapter 6. Algorithms for matrices are introduced and further properties of matrices are developed, which will be used in later chapters on algebra, counting, and theory of codes.

Permutations are used for counting in Chapter 8 and also for applications in algebra and combinatorics in later chapters. Again the material in Chapter 8, while related to Chapter 4, can be studied independently.

Chapter 5 is independent of the previous chapters except for the matrices in the previous chapter. Algorithms are developed including sorting algorithms. The complexity of algorithms is also developed in this chapter. Prefix and suffix notation are introduced here. They are again discussed in Chapter 15 with regard to traversing binary trees. Binary and hexadecimal numbers are also introduced in this chapter.

Many elementary concepts of graphs, directed graphs, and trees are covered in Chapter 6. These concepts are covered in more depth in Chapters 14-16. Chapter 6 is independent of the previous chapters.

In Chapters 7 and 9 the basics of number theory are developed. These chapters are necessary for applications of number theory in Chapter 23 but are otherwise completely independent of the other chapters and may be omitted if desired.

Chapter 8 is the beginning of extensive coverage of combinatorics. This is continued in many of the chapters including Chapters 12, 13, and 17. Chapter 8 also covers probability, which is not common in most other discrete mathematics books.

Chapters 9 and 20 cover the basic concepts of algebra including semigroups, groups rings, semilattices, lattices, rings, integral domains, and fields. These chapters use Sections 3.6 and 4.3 for examples of groups and rings. Chapter 9 is necessary for the applications in Chapters 17-21.

In many ways Chapters 11, 12, and 13 form a package. Recursion is continued in Chapter 11. In addition to the standard linear recurrence relations normally covered in a discrete mathematics text, the theory of finite difference is also covered. Chapter 6 should be covered before this chapter unless the student already has some knowledge of recursion. Chapter 12 continues the counting introduced in Chapter 8. It covers topics introduced in Chapter 8 such as occupancy problems and inclusion-exclusion. It also introduces derangements and rook polynomials. It is closely related to Chapter 11. Many of the same topics are covered from different points of view. One example of this is Stirling numbers. However neither chapter is dependent on the other.

Chapters 11 and 12 are tied together in Chapter 13, where generating functions are used to continue the material in both chapters. In particular, generating functions provide a powerful tool for the solution of occupancy problems.

Chapters 14-16 continue the study of trees and graphs begun in Chapter 6. They obviously depend on the material in Chapter 6, but are virtually independent of most of the preceding chapters. One exception is the use of matrices in some of the algorithms. Many of the standard topics of Graphs and Trees are covered including planar graphs, Hamiltonian cycles, binary trees, spanning trees, minimal spanning trees, weighted trees, shortest path algorithms, and network flows.

Chapters 17-23 form another cluster consisting of number theory, algebra, combinatorics and their application. The theory of computation is introduced in Chapter 17. This includes codes, regular languages, automata, grammars and their relationship. This chapter uses semigroups from Section 9.2. Chapter 18 introduces special codes such as error detecting codes and error correcting codes. This chapter requires knowledge of group theory, found in Section 9.4 and a knowledge of matrices, found in Chapters 4 and 5. Codes are explored from yet another direction in Chapter 23 where cryptography is introduced. This chapter is dependent on the previous chapters on number theory.

In Chapter 19, algebra and combinatorics are combined for the development of Burnside's Theorem and Polya's Theorem for the enumeration of colors. It primarily depends on a knowledge of permutations found in Section 9.4

Chapter 21 is a simple application of groups and semigroups and their mapping onto the complex plane. The prerequisites for this chapter are Sections 9.2 and 9.4.

Chapter 22 gives three important applications of number theory. The study of Hashing functions and cryptography is particularly relevant to computer science.

When teaching a beginning course, I normally cover Chapters 1-5 in their entirety, Sections 8.1-8.3 and try to cover the first three sections of Chapter 6. As mentioned previously, the material in the first eight chapters is arranged for maximal flexibility. SUPPLEMENTS

A solutions manual is available from the publisher with complete solutions to all problems. A website is available at prenhall/janderson. This website includes links to other interesting sites in discrete mathematics, quizzes, and additional problems. ACKNOWLEDGMENTS

First I would like to thank George Lobell for his leadership in the development of this book and Barbara Mack for coordinating our efforts. I would like to thank Kristin and Philip Musik for their excellent artwork. I am especially grateful to James Bell for the tremendous amount of work that he has contributed. I am sorry that he was unable to co-author this book with me. I miss having him as a partner. I would also like to thank my colleagues Dan Cooke, Ed Wilde, Rick Chow, M. B. Ulmer, and Jerome Lewis for their help. I would like to thank Soledad Sugai for the errors she found while a student in my course. I would also like to thank students Jody Dean, Jessica Dones, Grace Ellison, Vinny Chin Fai Ip, Priscilla Lapierre, Esther Ly, Badral Madani, Julie Norris, Tracy Quin and Robert Wiegert, who survived the first voyage through this material.

Please feel free to e-mail me with comments and suggestions for future improvements

Рекомендуемые книги

Купить Максимальный репост: Как соцсети заставляют нас верить фейковым новостям

Максимальный репост: Как соцсети заставляют нас верить фейковым новостям

Борислав Козловский

324 грн
Купить Кваліфікаційний іспит адвоката: доступ до майбутньої  професії : практичная частина. Навчальний посібник

Кваліфікаційний іспит адвоката: доступ до майбутньої професії : практичная частина. Навчальний посібник

за ред. О. П. Кучинської

190 грн
Купить Без стресса. Научный подход к борьбе с депрессией, тревожностью и выгоранием

Без стресса. Научный подход к борьбе с депрессией, тревожностью и выгоранием

Митху Сторони

370 грн
Купить Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow

Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow

Себастьян Рашка, Вахид Мирджалили

810 грн
Купить Хорошо быть тихоней

Хорошо быть тихоней

Стивен Чбоски

160 грн
Купить Атлантида. Элита в поисках бессмертия

Атлантида. Элита в поисках бессмертия

Анастасия Новых

190 грн
Купить Портрет маркерами с Лерой Кирьяковой. Как изобразить характер, эмоции и внутренний мир

Портрет маркерами с Лерой Кирьяковой. Как изобразить характер, эмоции и внутренний мир

Валерия Кирьякова

520 грн
Купить Гаррі Поттер і філософський камінь. Велике ілюстроване видання

Гаррі Поттер і філософський камінь. Велике ілюстроване видання

Джоан Роулинг

580 грн
Купить Конверсия: Как превратить лиды в продажи

Конверсия: Как превратить лиды в продажи

Крис Смит

280 грн
Купить Программирование на Javascript для чайников

Программирование на Javascript для чайников

Крис Минник, Ева Холланд

330 грн
Купить Їж, Пий, Худни

Їж, Пий, Худни

Наталія Самойленко

315 грн
Купить Облік в фермерських господарствах

Облік в фермерських господарствах

Нина Коваль, О. А. Подолянчук

320 грн
Купить Нелюбимая дочь. Как оставить в прошлом травматичные отношения с матерью и начать новую жизнь

Нелюбимая дочь. Как оставить в прошлом травматичные отношения с матерью и начать новую жизнь

Пег Стрип

220 грн
Купить На пике. Как поддерживать максимальную эффективность без выгорания

На пике. Как поддерживать максимальную эффективность без выгорания

Брэд Штульберг, Стив Магнесс

392 грн
Купить Кодекс адміністративного судочинства України: Науково-практичний коментар

Кодекс адміністративного судочинства України: Науково-практичний коментар

За заг. ред. Ясинка М.М.

475 грн
Купить Научиться писать маслом быстро

Научиться писать маслом быстро

Хэйзел Соун

230 грн
Купить Вузький коридор. Держави, суспільства і доля свободи

Вузький коридор. Держави, суспільства і доля свободи

Дарон Аджемоґлу, Джеймс Робінсон

275 грн
Купить Животные акварелью. Пособие по анималистическому рисунку. 8 пошаговых уроков

Животные акварелью. Пособие по анималистическому рисунку. 8 пошаговых уроков

Дэвид Уэбб

415 грн
Купить Прогулка по Закарпатью

Прогулка по Закарпатью

195 грн
Купить The Wonderfull Wizard of Oz / Чарівна країна Оз. Рівень «Pre-Intermediate»

The Wonderfull Wizard of Oz / Чарівна країна Оз. Рівень «Pre-Intermediate»

Лаймен Френк Баум

52 грн
Купить Адвокатський іспит: Зразки процесуальних документів. Навчальний посібник

Адвокатський іспит: Зразки процесуальних документів. Навчальний посібник

Баулін О.В., Лебідь В.І., Матвєєв П.С.

180 грн
Купить Закон України Про Національну гвардію України. Станом на 08.12.2020

Закон України Про Національну гвардію України. Станом на 08.12.2020

30 грн
Купить Русско-английский разговорник

Русско-английский разговорник

Олег Таланов

25 грн
Купить Як подолати кризу управління

Як подолати кризу управління

Іцхак Адізес

260 грн
Купить Секс, водка, потанцуем? Природа удовольствий

Секс, водка, потанцуем? Природа удовольствий

Виктория Канела

280 грн
Купить Лабиринга. Настольная игра для любителей лабиринтов

Лабиринга. Настольная игра для любителей лабиринтов

Мартин Недергард Андерсен

520 грн
Купить Як стати успішним ілюстратором

Як стати успішним ілюстратором

Дерек Бразелл, Джо Девіс

500 грн
Купить На крыльях любви. История создания метода Тета-исцеления

На крыльях любви. История создания метода Тета-исцеления

Вианна Стайбл

99 грн
Купить Языкознание: От Аристотеля до компьютерной лингвистики

Языкознание: От Аристотеля до компьютерной лингвистики

Владимир Алпатов

255 грн
Купить От скетчей к акварельному рисунку. Как улучшить технику выполнения эскизов и создать свою первую настоящую картину

От скетчей к акварельному рисунку. Как улучшить технику выполнения эскизов и создать свою первую настоящую картину

Венди Джелберт

495 грн
Купить Государство

Государство

Платон

64 грн
Купить Кваліфікаційне іспит суддів: Навчально-практичний посібник

Кваліфікаційне іспит суддів: Навчально-практичний посібник

Вереша Р.В

305 грн
Купить Romeo and Juliet. Ромео и Джульетта

Romeo and Juliet. Ромео и Джульетта

Уильям Шекспир

98 грн
Купить Феномен ZARA

Феномен ZARA

Ковадонга О’Шеа

415 грн
Купить Кіношно. Графічна мандрівка світом кіно

Кіношно. Графічна мандрівка світом кіно

Эдвард Росс

189 грн
Купить Спіймай дзен життя. Японські практики, що ведуть до спокою та радості

Спіймай дзен життя. Японські практики, що ведуть до спокою та радості

Шинмуо Масуно

135 грн
Купить Мислення швидке й повільне

Мислення швидке й повільне

Даниэль Канеман

370 грн
Купить Сказки

Сказки

Редьярд Киплинг

68 грн
Купить Три метра над небом. Трижды ты

Три метра над небом. Трижды ты

Федерико Моччиа

495 грн
Купить Колыбельная для маленького пирата (иллюстр. А. Ломаева)

Колыбельная для маленького пирата (иллюстр. А. Ломаева)

Антон Ломаев

200 грн

Книги из категории "Книги по программированию"

Купить Конкретная математика. Математические основы информатики

Конкретная математика. Математические основы информатики

Рональд Л. Грэхем, Дональд Э. Кнут, Орен Паташник

1 080 грн
Купить JRuby. Сборник рецептов.

JRuby. Сборник рецептов.

Эдельсон Д., Лю Г.

240 грн
120 грн
Купить Java. Карманный справочник

Java. Карманный справочник

Роберт Лигуори, Патриция Лигуори

270 грн
Купить Введение в теорию автоматов, языков и вычислений

Введение в теорию автоматов, языков и вычислений

Джон Хопкрофт, Раджив Мот

590 грн
Купить CSS. Карманный справочник

CSS. Карманный справочник

Эрик А. Мейер

270 грн
Купить Adobe Flash CS6. Официальный учебный курс (+ CD)

Adobe Flash CS6. Официальный учебный курс (+ CD)

Михаил Райтман

452 грн
430 грн
Купить Python и наука о данных для чайников

Python и наука о данных для чайников

Джон Поль Мюллер, Лука Массарон

495 грн
Купить Цифрові Діти. Кодінг. CanCode  Go!

Цифрові Діти. Кодінг. CanCode Go!

50 грн
Купить Цифрові Діти. Кодінг. CanCode SCR3

Цифрові Діти. Кодінг. CanCode SCR3

50 грн
Купить Язык программирования C++. Краткий курс

Язык программирования C++. Краткий курс

Бьярне Страуструп

495 грн
Купить Геймдизайн. Как создать игру, в которую будут играть все

Геймдизайн. Как создать игру, в которую будут играть все

Джесси Шелл

460 грн
Купить Язык программирования C++. Краткий курс

Язык программирования C++. Краткий курс

Бьярне Страуструп

420 грн
Купить Visual Basic.NET Developer's Guide to ASP.NET, XML, and ADO.NET

Visual Basic.NET Developer's Guide to ASP.NET, XML, and ADO.NET

Jeffrey P. McManus and Ch

275 грн
138 грн
Купить Visual C++.NET. Классика программирования +CD

Visual C++.NET. Классика программирования +CD

Степаненко О.Е.

83 грн
42 грн
Купить Java: оптимизация программ. Практические методы повышения производительности приложений в JVM

Java: оптимизация программ. Практические методы повышения производительности приложений в JVM

Бенджамин Дж. Эванс, Джеймс Гоф, Крис Ньюланд

590 грн
Купить Разработка приложений для Windows Phone. Архитектура, фреймворки, API

Разработка приложений для Windows Phone. Архитектура, фреймворки, API

Гецманн П.

706 грн
353 грн
Купить Стандарты программирования на С++

Стандарты программирования на С++

Герб Саттер, Андрей Александреску

420 грн
Купить Кров, піт і пікселі. Тріумфальні та бурхливі історії по той бік створення відеоігор

Кров, піт і пікселі. Тріумфальні та бурхливі історії по той бік створення відеоігор

Джейсон Шрейер

265 грн
Купить Delphi/Kylix Database Development

Delphi/Kylix Database Development

Harmon Eric

248 грн
124 грн
Купить Scratch для детей. Самоучитель по программированию

Scratch для детей. Самоучитель по программированию

Мажед Маржи

495 грн

Цитаты пользователей

Всего цитат
0

Только зарегистрированные пользователи могут оставлять комментарии. Войдите, пожалуйста.

Отзывы

Отзывы
0 рецензий

Только зарегистрированные пользователи могут оставлять комментарии. Войдите, пожалуйста.
Все права защищены © 2003-2021 Bookzone.com.ua              Условия использования | Политика конфиденциальности
Интеграция сайта с 1С: ©SUPC